



# WBS: 6.8.y.2 Level-0 MDT Trigger

Anyes Taffard
Level-2 Muon R&D Manager
University of California Irvine

U.S. ATLAS HL-LHC NSF Conceptual Design Review National Highway Institute - Arlington, VA
March 8-10, 2016



## **About the Expert**

- √ Expert: Anyes Taffard, Associate Professor of Physics
- √ Institute: University of California Irvine
  - ATLAS member since 2007
  - Previously, CDF member (Tevatron)
- **√** Experiences:
  - CDF:
    - Level-I track trigger extrapolator
    - CDF Top Properties Convener
  - ATLAS Phase-I New Small Wheel muon upgrade
    - NSW TDR: Feasibility simulation studies for sTGC muon trigger
    - \* sTGC muon trigger simulation with ATLAS full simulation
    - NSW Readout and trigger electronics
    - Supervision of I postdoc and I graduate student contributing to NSW
  - ATLAS Data Quality convener [Jan-2015-Sept 2016]
  - US-ATLAS Muon R&D L2 manager for HL-LHC [March 2015-present]





### **About the Institution**

- √ Group involved in ATLAS since 1996
- ✓ Muon Cathode Strip Chambers: CSC (Muon Small wheel)
  - CSC Readout system (ROD) and upgraded design installed in 2014 during Long-Shutdown-I
  - CSC chambers installation and commissioning
  - CSC maintenance, operation, performances and data quality monitoring (online & offline)
- √ Typical personnel available (off project):
  - One Project Scientist
    - New hire underway
  - One Software Engineer
  - Two postdocs
  - Two grad students
  - Some undergraduate students





**CSC Run-2 ROD** 



### **Outline**

- √ Challenges & Motivations
- √ The solution: Level-0 MDT muon trigger
  - Overview
  - Functionalities
  - Conceptual design
- √ R&D needed
- **√** Summary



### **Current Muon Trigger System**

- ✓ Muon trigger provided by RPC (barrel) and TGC (endcap)
- $\sqrt{\ }$  Phase-I New Small wheel endcap 1.3<|η|<2.7
  - Will provide 2-3 reduction in single-µ trigger rate

#### Limitations of current system

- Moderate spacial resolution of RPC/TGC
  - ♦ 10-20 GeV trigger rate dominated by mis-measured muon  $p_T$  or "fake" muon (K/ $\pi$ → $\mu$ )
- Low trigger efficiency (~65% in barrel)
  - Down by 10% for HL-LHC since RPCs need to be operated at a reduced voltage to mitigate aging
- Reduced acceptance in barrel RPC
  - Address in HL-LHC by adding RPC chambers



#### Level-I Muon Trigger Composition



## RPC trigger efficiency for reconstructed muon p<sub>T</sub>>15GeV





### Motivations to Muon Trigger Upgrade

- √ HL-LHC physics program necessitates maintaining single 
  µ trigger p<sub>T</sub> threshold of ~20 GeV
- ✓ With current system and with HL-LHC conditions, the single µ trigger rate for p<sub>T</sub>>20GeV would increase by a factor 2
  - To maintain the current trigger rate, the p<sub>T</sub> threshold would need to be increased to 35 GeV
  - Such p<sub>T</sub> threshold would significantly degrade the physics performance.



- By using MDT precision hits, muon  $p_T$  can be measured more accurately at level-0
- Reduces fake muon trigger rate by up to a factor 4
- Add redundancy to triggers based on RPC/TGC
  - Less stringent requirements imply improvement in trigger efficiency







## Overview of Muon Trigger Upgrade



- √ To handle increase in rates and fakes associated with HL-LHC conditions, MDT readout electronics needs to be upgraded
- √ Offers the opportunity to implement an MDT based Level-0 muon trigger
- ✓ Level-0 MDT trigger is one of the critical component necessary to maintain the muon trigger performances necessary for the HL-LHC physics program
- √ This project is synergetic with NSF US-ATLAS plans in the muon upgrade for HL-LHC
  - UCI well position based on past/current experience in muon readout and trigger system



### System Requirements

### √ Goals:

 Use MDT and sMDT precision hits to preform a Level-0 muon trigger decision within 6µs latency

#### **√** Functionalities

- Calibrate MDT hits drift time
- Segment finding on each MDT layer
- Segments linking
- Track fitting





## Conceptual Design



- √ Deliverables: Design, production and testing of
  - Mezzanine board
  - Firmware for MDT trigger algorithm



### **R&D Effort Toward TDR**

√ What are the major challenges remaining?

TDAQ TDR: End-2017

Muon TDR: Mid-2017

- Latency budget
  - Preliminary studies show that an MDT trigger algorithm can be performed within 4.5μs (with 1.6μs used to received hits from CSM to MDT trigger)
  - Latency depends on algorithm implementation choices
- √ What R&D needs to be done to address these challenges
  - Develop an MDT based trigger algorithm that can meet the stringent latency budget.
    - Define specifications, functionalities and performance goals
    - Implement preliminary algorithm on a demonstrator board to estimate its latency.
    - **Estimate the full data chain latency**



## R&D effort (cont.)

### Planned activities and milestones beyond TDR:

#### √ FY18:

- Refine trigger algorithm and estimate performance
- Define hardware choice
  - Start design and simulation of firmware

#### **√** FY19:

- Finalize firmware design, simulation and implementation on evaluation board to test performances
- Start design and simulation of mezzanine board

#### **✓ FY20:**

Begin full prototype design of mezzanine board and firmware



### Summary

- ✓ Level-0 MDT trigger is one of the critical component to maintain the muon trigger performances necessary for the HL-LHC physics program
- ✓ Project is synergetic with the rest of NSF US-ATLAS muon upgrade
- √ Effort built on group expertise and experience
- √ Clear R&D path toward TDR and beyond to insure readiness for construction phase

## **BACKUP**



### **Cost Estimate**

- √ Cost was estimated based on the experience from the New Small Wheel (NSW) trigger processor, which is a comparable system with AMC fitted with FPGA within an ATCA carrier card (see p5 of BoE)
  - Cost driven by FPGA
    - For the estimate used Xilink Virtex-7 FPGA (same as for NSW)

| Element                                   | Quantities | Unit Cost | Cost [\$ 2015] |  |
|-------------------------------------------|------------|-----------|----------------|--|
| TDAQ                                      |            |           |                |  |
| ATCA board base for MDT trigger processor |            |           | 12,717         |  |
| FPGA segment finding, linking             |            |           |                |  |
| & track fitting                           | 2          | 4,674     | 9,348          |  |
| PCB                                       | 2          | 1,087     | 2,174          |  |
| PCB assembly                              | 2          | 326       | 653            |  |
| PCB misc parts                            | 2          | 272       | 543            |  |
| rcs misc parts                            |            | 2/2       |                |  |

Table 2: Cost estimate for the MDT trigger AMC

- 32 production boards
- 4 additional boards for testing and verifications
- 2 prototypes (see p2 of BoE)

| 6.8.y.2 MDT Trigger |             |              |                |              |                 |                |  |  |  |
|---------------------|-------------|--------------|----------------|--------------|-----------------|----------------|--|--|--|
| WBS                 | Description | Labor<br>FTE | Labor<br>Ayk\$ | M&S<br>Ayk\$ | Travel<br>Ayk\$ | TOTAL<br>Ayk\$ |  |  |  |
| 6.8.y.2             | MDT Trigger | 11.81        | 1,610          | 597          | 49              | 2,256          |  |  |  |
|                     | Engineers   | 5.06         |                |              |                 |                |  |  |  |
|                     | Techs       | 2.50         |                |              |                 |                |  |  |  |
|                     | Students    | 4.25         |                |              |                 |                |  |  |  |
|                     |             |              |                |              |                 |                |  |  |  |

Table 1: The deliverables from UC Irvine



### Risk Estimate

#### **✓** Schedule Risk

- R&D does not yield sufficient information to define completely specifications for mezzanine board and/or firmware
- Mitigate risk by ensuring that relevant informations are available to define them.
   Ensure that there is viable path for communication between boards and all is accounted for in latency calculation.

#### √ Cost Risk

- Final FPGA cost may be higher than anticipated.
- Mitigate risk by performing studies leading to the best hardware solution both in term of performance and cost.

#### √ Scope Risk

- ATCA carrier cards fairly new system to ATLAS
- Mitigate risk by working with collaborators experience with such systems

#### **√** External Risk

- ATCA carrier card developed by external collaborators. Delay in delivery will reduce testing time of final integrated design
- Mitigate risk by developing standalone testing stands. Modest delay can be accommodated within current schedule